"/>

人人草人人-欧美一区二区三区精品-中文字幕91-日韩精品影视-黄色高清网站-国产这里只有精品-玖玖在线资源-bl无遮挡高h动漫-欧美一区2区-亚洲日本成人-杨幂一区二区国产精品-久久伊人婷婷-日本不卡一-日本成人a-一卡二卡在线视频

Feature: To ensure safe, sufficient farm produce supply for world's growing population

Source: Xinhua    2018-07-02 07:08:28

by Xu Jing, Zhou Zhou, Miao Zhuang

CHICAGO, July 1 (Xinhua) -- Ian Jepson has worked for Syngenta for 29 years. As head of plant performance biology at Syngenta Research Triangle Park, North Carolina, he aims to develop crops that produce more yields in a sustainable way.

"The world's population increases 100,000 people every single day. We need to be able to feed those people in a sustainable way," he told Xinhua in an interview.

INCREASE CROP YIELD

Agricultural production in the world faces many challenges nowadays: insects, crop diseases and viruses. All these pose a big threat to the output of agricultural products.

"We have a number of projects using GMO (genetically modified organism) and non-GMO techniques to do that (increase crop yield)," Jepson said. By technology-rich aid technology, Jepson and his team are transferring insect resistance genes into the crops to stop the insects damaging the crop, then losing yield.

Jepson is also studying the impact of drought, heat and cold on crops.

Syngenta has an innovation center located in the Research Triangle Park in the U.S. state of North Carolina for Jepson and his team to do all these researches. The crop greenhouse facility here has many small chambers, with each chamber being controlled independently of the other in terms of temperature, humidity, and CO2, and underneath each room in the basement there are very advanced set of equipment for air conditioning, and humidity control, CO2 control.

"It's like an arms race. Biology will always adapt," Jepson said. When the first wave of technology was introduced, it protected the crops from certain insects and diseases. Then the insects and diseases evolve, and eat crops again after a number of years. Then new technology needs to be introduced.

"So we need to always bring in new technologies," Jepson stressed. "You need a combination of technologies, including new technologies like genome editing, biologicals," as a supplement to chemical control and traditional breeding.

"The evolution of modern farming technology and responsible, science-based environmental management is imperative if we are to sustainably produce affordable, safe and local food to feed more than 9 billion people by 2050 and take care of our planet," Jepson reiterated.

Before becoming product safety head of Syngenta, Hope Hart has been involved in insect control research in the company for 10 years. "We use (GM) technology to help farmers produce more food, increase their yield. We also help farmers decrease their inputs, like water input and chemical input. So it gives farmers economic advantages as well."

Statistics show that in early 1930s, 7,000 corn plants per acre were grown in the United States, yielding about 27 bushels per acre. Today, 35,000 plants and 150 bushels per acre are common, thanks to modern equipment and GM technologies.

ENVIRONMENT FRIDENDLY

About 70 percent of the world's water is used by agriculture, and there is only a small amount available for expansion.

Statistics provided by the United Nations Environment Programme (UNEP) show that in 1950, one hectare of farmland only need to feed two people. By 2030, the number of people one hectare of farmland need to feed will increase to five people. This requires a better use of existing farmland.

One way to better use existing farmland is to make crops more sustainable and environmentally friendly.

Jepson's team has worked on a big crop program for drought tolerance. They also have a GM program developing GM leads, and crops engineered with the GM leads they developed would use less water. Furthermore, they are using genome editing technology to produce corn varieties that use 15 percent less water.

In addition, Jepson is using advanced molecular marker, a non-GM technology, to develop corn that can grow under moderate drought stress conditions and produces 25 percent more yield.

Controlling use of chemicals, say herbicides, insecticides, for the benefit of environment is another advantage GM technology development gives.

Many old technologies on the market from several decades ago are characteristic of high use rate of chemicals and have potential environmental impacts. "Our ambition is to replace those with modern, safer chemistry," said Jepson.

Traditionally, one hectare of farmland may need two kilograms of chemicals. With new technologies, spoonful chemical application may be enough, Jepson said. "One application may control for the season."

Of her 22-year career in Syngenta, Hart has been in product safety research for 12 years. She holds that GM crops have two advantages: allowing farmers to spray less pesticide; and saving farmers from excessive tilling. "No tilling has huge benefits for the ground, from temperature control to erosion, soil erosion, water runoff from the soil."

Thanks to introduction of modern farming technologies, the yield of cotton, soybeans, corn and wheat worldwide has increased by 43 percent, 55 percent, 64 percent and 25 percent, respectively, from 1980 to 2011.

In the same period, soil loss caused by cotton, soybean, corn and wheat growing dropped by 68 percent, 66 percent, 67 percent and 47 percent, respectively; irrigation water use dropped by 75 percent, 42 percent, 53 percent and 12 percent; energy use dropped by 31 percent, 48 percent, 44 percent and 12 percent; and carbon emission dropped by 22 percent, 49 percent, 36 percent and two percent.

FOOD SECURITY

Entering the main gate of Syngenta Innovation Center located in the Research Triangle Park in the U.S. state of North Carolina one can see an oil painting portrait of Mary-Dell Chilton, the Mother of Genetic Engineering, right in front.

In 1977, Chilton documented how a bacterium transferred some of its DNA into a tobacco leaf, triggering the growth of a crown gall. By discovering the mechanism Chilton launched GM.

Since GM technology was first put on market in 1996, an estimated 186 million hectares of GM food crops have been grown worldwide; and over three trillion GM food meals have been served and eaten by humans.

Despite the fact that GM foods are widely consumed, the concern about GM foods has never disappeared.

Hart explained her work to Xinhua. GM crops usually take 10 to 13 years from idea to market. "About half of that time is product safety studies," Hart said. "We conduct anywhere from 80 to 100 studies on every one of our GM crops before they go out onto market."

"We also test the plant to make sure it still is nutritious as it was when it started out," Hart added.

Hart compares human's digestion of GM foods to a broken camera, saying if a camera is broken into pieces, one piece cannot be a functioning camera.

"The same thing is true for a gene," said Hart. "When we eat DNA, it gets broken down into individual pieces and then our body absorbs those individual pieces."

"I had cheese toast this morning. I ate a lot of wheat DNA with my bread and cow DNA with my cheese, and I am not turning into a wheat plant or cow right now. I am not making wheat proteins. There is nothing incorporated into my DNA that will actually pass onto the next generation," Hart said.

Nevertheless, Hart does not oppose other types of farming. "Sometimes farmers may need to be more conventional than GM, or they are in a situation where the genetics work better for them and they use a GM approach instead," Hart added. "I believe in pulling all these different technologies together."

CHINA TIES

In June 2017, ChemChina, a state-owned enterprise with full name as China National Chemical Corporation, purchased Syngenta, for 43 billion U.S. dollars, the largest transaction ever clinched by a Chinese company overseas.

Given China's huge population and reliance on agriculture, the marriage between ChemChina and Syngenta is good news for them both.

Before the tie was knotted, ChemChina and Syngenta have already forged a strong relationship for decades. They had worked closely on a potato project in Dingxi in China's northwestern Gansu Province, where they brought technology, products and advice to farmers there and increased the yields by more than 30 percent.

Before being purchased, Syngenta has already established multiple innovation and R&D centers in China, has five wholly-owned enterprises, several joint ventures and a number of representative offices, and has employed around 2,000 workers there.

China is very active as well as advanced in modern agricultural technology research, and has many gifted agricultural talents, said Shi Liang, head of Trait Technologies at Syngenta. Through its innovation centers in China, "Syngenta is supporting its global agricultural research to feed the global agricultural pipeline; to attract Chinese agricultural talents; and to support China's agriculture."

In the past 10 years, Syngenta has established collaboration with 26 institutes and universities in China, and supported more than 28 Chinese students with Syngenta Mary-Dell Chilton Graduate Scholarship.

"I think Syngenta can play a good role in supporting China's agriculture, from the research development to the production... and ChemChina's purchase of Syngenta has elevated it (the role)," Shi told Xinhua. "We can actually work together for some big China initiatives, which would not be possible in the past for a foreign company."

"Chinese agricultural companies and the academia always want to find a partner. They have done good front-end research. They just don't have a good way to move things to the pipeline and now it is a very good opportunity," Shi said.

Excited about the agricultural prospects the marriage may bring to China in the future, Shi said: "let's do something together and we can get something pass to the downstream."

Editor: ZX
Related News
Xinhuanet

Feature: To ensure safe, sufficient farm produce supply for world's growing population

Source: Xinhua 2018-07-02 07:08:28

by Xu Jing, Zhou Zhou, Miao Zhuang

CHICAGO, July 1 (Xinhua) -- Ian Jepson has worked for Syngenta for 29 years. As head of plant performance biology at Syngenta Research Triangle Park, North Carolina, he aims to develop crops that produce more yields in a sustainable way.

"The world's population increases 100,000 people every single day. We need to be able to feed those people in a sustainable way," he told Xinhua in an interview.

INCREASE CROP YIELD

Agricultural production in the world faces many challenges nowadays: insects, crop diseases and viruses. All these pose a big threat to the output of agricultural products.

"We have a number of projects using GMO (genetically modified organism) and non-GMO techniques to do that (increase crop yield)," Jepson said. By technology-rich aid technology, Jepson and his team are transferring insect resistance genes into the crops to stop the insects damaging the crop, then losing yield.

Jepson is also studying the impact of drought, heat and cold on crops.

Syngenta has an innovation center located in the Research Triangle Park in the U.S. state of North Carolina for Jepson and his team to do all these researches. The crop greenhouse facility here has many small chambers, with each chamber being controlled independently of the other in terms of temperature, humidity, and CO2, and underneath each room in the basement there are very advanced set of equipment for air conditioning, and humidity control, CO2 control.

"It's like an arms race. Biology will always adapt," Jepson said. When the first wave of technology was introduced, it protected the crops from certain insects and diseases. Then the insects and diseases evolve, and eat crops again after a number of years. Then new technology needs to be introduced.

"So we need to always bring in new technologies," Jepson stressed. "You need a combination of technologies, including new technologies like genome editing, biologicals," as a supplement to chemical control and traditional breeding.

"The evolution of modern farming technology and responsible, science-based environmental management is imperative if we are to sustainably produce affordable, safe and local food to feed more than 9 billion people by 2050 and take care of our planet," Jepson reiterated.

Before becoming product safety head of Syngenta, Hope Hart has been involved in insect control research in the company for 10 years. "We use (GM) technology to help farmers produce more food, increase their yield. We also help farmers decrease their inputs, like water input and chemical input. So it gives farmers economic advantages as well."

Statistics show that in early 1930s, 7,000 corn plants per acre were grown in the United States, yielding about 27 bushels per acre. Today, 35,000 plants and 150 bushels per acre are common, thanks to modern equipment and GM technologies.

ENVIRONMENT FRIDENDLY

About 70 percent of the world's water is used by agriculture, and there is only a small amount available for expansion.

Statistics provided by the United Nations Environment Programme (UNEP) show that in 1950, one hectare of farmland only need to feed two people. By 2030, the number of people one hectare of farmland need to feed will increase to five people. This requires a better use of existing farmland.

One way to better use existing farmland is to make crops more sustainable and environmentally friendly.

Jepson's team has worked on a big crop program for drought tolerance. They also have a GM program developing GM leads, and crops engineered with the GM leads they developed would use less water. Furthermore, they are using genome editing technology to produce corn varieties that use 15 percent less water.

In addition, Jepson is using advanced molecular marker, a non-GM technology, to develop corn that can grow under moderate drought stress conditions and produces 25 percent more yield.

Controlling use of chemicals, say herbicides, insecticides, for the benefit of environment is another advantage GM technology development gives.

Many old technologies on the market from several decades ago are characteristic of high use rate of chemicals and have potential environmental impacts. "Our ambition is to replace those with modern, safer chemistry," said Jepson.

Traditionally, one hectare of farmland may need two kilograms of chemicals. With new technologies, spoonful chemical application may be enough, Jepson said. "One application may control for the season."

Of her 22-year career in Syngenta, Hart has been in product safety research for 12 years. She holds that GM crops have two advantages: allowing farmers to spray less pesticide; and saving farmers from excessive tilling. "No tilling has huge benefits for the ground, from temperature control to erosion, soil erosion, water runoff from the soil."

Thanks to introduction of modern farming technologies, the yield of cotton, soybeans, corn and wheat worldwide has increased by 43 percent, 55 percent, 64 percent and 25 percent, respectively, from 1980 to 2011.

In the same period, soil loss caused by cotton, soybean, corn and wheat growing dropped by 68 percent, 66 percent, 67 percent and 47 percent, respectively; irrigation water use dropped by 75 percent, 42 percent, 53 percent and 12 percent; energy use dropped by 31 percent, 48 percent, 44 percent and 12 percent; and carbon emission dropped by 22 percent, 49 percent, 36 percent and two percent.

FOOD SECURITY

Entering the main gate of Syngenta Innovation Center located in the Research Triangle Park in the U.S. state of North Carolina one can see an oil painting portrait of Mary-Dell Chilton, the Mother of Genetic Engineering, right in front.

In 1977, Chilton documented how a bacterium transferred some of its DNA into a tobacco leaf, triggering the growth of a crown gall. By discovering the mechanism Chilton launched GM.

Since GM technology was first put on market in 1996, an estimated 186 million hectares of GM food crops have been grown worldwide; and over three trillion GM food meals have been served and eaten by humans.

Despite the fact that GM foods are widely consumed, the concern about GM foods has never disappeared.

Hart explained her work to Xinhua. GM crops usually take 10 to 13 years from idea to market. "About half of that time is product safety studies," Hart said. "We conduct anywhere from 80 to 100 studies on every one of our GM crops before they go out onto market."

"We also test the plant to make sure it still is nutritious as it was when it started out," Hart added.

Hart compares human's digestion of GM foods to a broken camera, saying if a camera is broken into pieces, one piece cannot be a functioning camera.

"The same thing is true for a gene," said Hart. "When we eat DNA, it gets broken down into individual pieces and then our body absorbs those individual pieces."

"I had cheese toast this morning. I ate a lot of wheat DNA with my bread and cow DNA with my cheese, and I am not turning into a wheat plant or cow right now. I am not making wheat proteins. There is nothing incorporated into my DNA that will actually pass onto the next generation," Hart said.

Nevertheless, Hart does not oppose other types of farming. "Sometimes farmers may need to be more conventional than GM, or they are in a situation where the genetics work better for them and they use a GM approach instead," Hart added. "I believe in pulling all these different technologies together."

CHINA TIES

In June 2017, ChemChina, a state-owned enterprise with full name as China National Chemical Corporation, purchased Syngenta, for 43 billion U.S. dollars, the largest transaction ever clinched by a Chinese company overseas.

Given China's huge population and reliance on agriculture, the marriage between ChemChina and Syngenta is good news for them both.

Before the tie was knotted, ChemChina and Syngenta have already forged a strong relationship for decades. They had worked closely on a potato project in Dingxi in China's northwestern Gansu Province, where they brought technology, products and advice to farmers there and increased the yields by more than 30 percent.

Before being purchased, Syngenta has already established multiple innovation and R&D centers in China, has five wholly-owned enterprises, several joint ventures and a number of representative offices, and has employed around 2,000 workers there.

China is very active as well as advanced in modern agricultural technology research, and has many gifted agricultural talents, said Shi Liang, head of Trait Technologies at Syngenta. Through its innovation centers in China, "Syngenta is supporting its global agricultural research to feed the global agricultural pipeline; to attract Chinese agricultural talents; and to support China's agriculture."

In the past 10 years, Syngenta has established collaboration with 26 institutes and universities in China, and supported more than 28 Chinese students with Syngenta Mary-Dell Chilton Graduate Scholarship.

"I think Syngenta can play a good role in supporting China's agriculture, from the research development to the production... and ChemChina's purchase of Syngenta has elevated it (the role)," Shi told Xinhua. "We can actually work together for some big China initiatives, which would not be possible in the past for a foreign company."

"Chinese agricultural companies and the academia always want to find a partner. They have done good front-end research. They just don't have a good way to move things to the pipeline and now it is a very good opportunity," Shi said.

Excited about the agricultural prospects the marriage may bring to China in the future, Shi said: "let's do something together and we can get something pass to the downstream."

[Editor: huaxia]
010020070750000000000000011100001372942761
主站蜘蛛池模板: 日日麻批免费视频播放 | 手机在线亚洲 | 亚洲自拍中文字幕 | 波多野结衣亚洲 | 香蕉网站视频 | 欧美性猛交xxxx乱大交hd | 自拍视频在线播放 | 天堂√中文最新版在线 | 日本免费高清视频 | 2021av在线| 色01看片网| 国产精品乱码一区二三区小蝌蚪 | www.avcao| 亚洲高清视频网站 | 人妻精油按摩bd高清中文字幕 | 在线视频欧美日韩 | 91污在线观看 | 欧美综合日韩 | 欧美色图激情小说 | 在线观看福利片 | 色伊人久久 | 可以直接看的毛片 | 亚洲系列第一页 | 日韩精品伦理 | 亚洲三级影视 | 综合久久久久久久 | 欧美大片在线免费观看 | 亚洲在线a | 大地av| 欧美日韩生活片 | 亚洲AV无码精品色毛片浪潮 | 天天欧美| 好看的中文字幕 | 日韩一级久久 | 97视频免费看 | 欧美成人三级精品 | 婷婷国产成人精品视频 | 东方av正在进入 | 国产专区一区二区三区 | 色大师av一区二区三区 | 欧美日韩在线观看视频 | 日本美女毛茸茸 | 红桃视频国产 | 亚洲欧美一区二区三区 | 美女黄视频网站 | 中文字幕一区二区三区5566 | 免费h片在线观看 | 4438x亚洲 | 亚洲色图在线播放 | 欧美日韩aa| av在线电影网站 | 成人在线视频一区二区 | 波多野结衣av中文字幕 | 欧美一区二区三区在线播放 | 美女亚洲一区 | 国产一区二区三区视频播放 | 精品伦一区二区三区 | 视频在线看 | 内射一区二区三区 | 强乱中文字幕av一区乱码 | 精品国产鲁一鲁一区二区张丽 | 亚洲五码av | 丝袜脚交免费网站xx | 欧美性xxxxx极品娇小 | 日日操操 | 人人插人人干 | 亚洲一区中文字幕 | 久久久久久蜜桃一区二区 | 亚洲成人播放 | 精品1卡二卡三卡四卡老狼 日本色视 | 国产女人爽到高潮a毛片 | 精品国产无码AV | 美女让男生桶 | 亚洲专区一区 | 婷婷伊人五月 | 精品久久久久中文慕人妻 | 污视频软件在线观看 | 亚洲人午夜射精精品日韩 | 中文第一页 | 国产精品视频久久 | 日韩专区第一页 | 少妇又紧又色又爽又刺激 | 超碰在线日韩 | 欧美人与性动交g欧美精器 韩日黄色 | 成人在线播放视频 | 日韩中文字幕av在线 | 拔插拔插华人 | 色久月| 美女自拍偷拍 | 黄色a在线观看 | 麻豆传谋在线观看免费mv | 推特裸体gay猛交gay | 午夜av网 | 亚洲激情自拍偷拍 | 日韩有码电影 | 无套爆插 | 成人在线观看一区 | 男操女视频在线观看 | 一区二区免费看 |