人人草人人-欧美一区二区三区精品-中文字幕91-日韩精品影视-黄色高清网站-国产这里只有精品-玖玖在线资源-bl无遮挡高h动漫-欧美一区2区-亚洲日本成人-杨幂一区二区国产精品-久久伊人婷婷-日本不卡一-日本成人a-一卡二卡在线视频

Stanford AI-powered research locates nearly all solar panels across U.S.

Source: Xinhua| 2018-12-21 07:31:01|Editor: Xiaoxia
Video PlayerClose

SAN FRANCISCO, Dec. 20 (Xinhua) -- Scientists from U.S. Stanford University can easily locate almost every solar panel installed across the United States by resorting to a deep-learning-powered tool that sorts more than 1 billion satellite images, a new study shows.

The Stanford scientists worked out a deep learning system called DeepSolar, which mapped about 1.7 million visible solar panels by analyzing more than 1 billion high-resolution satellite images with a machine learning algorithm and identified nearly every solar power installation in the contiguous 48 states.

The research team trained the machine learning DeepSolar program to find solar panel installations, whether they are large solar farms or individual rooftop facilities, by providing it with about 370,000 images, each covering about 100 feet (about 30.4 meters) by 100 feet.

DeepSolar learned to identify features of the solar panels such as color, texture and size without being taught by humans.

By using this new approach, the researchers were able to analyze the billion satellite images to find solar installations -- a workload that would have taken existing technology years to complete, but was done within one month with the help of DeepSolar.

"We can use recent advances in machine learning to know where all these assets are, which has been a huge question, and generate insights about where the grid is going and how we can help get it to a more beneficial place," said Ram Rajagopal, associate professor of civil and environmental engineering at Stanford.

The results of the research, which was published Wednesday in the science journal Joule, can help governments decide on renewable energy strategies, track the distribution of install solar panels or plan for optimal economic development in a given community.

"We are making this public so that others find solar deployment patterns, and build economic and behavioral models," said Arun Majumdar, a professor of mechanical engineering at Stanford who is also a co-supervisor of the project.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001376883991
主站蜘蛛池模板: 国产精品无码午夜福利 | 黄色在线免费视频 | 内射中出日韩无国产剧情 | 麻豆国产在线 | 超碰人人在线 | 久久久69 | 中文字幕av无码一区二区三区 | 麻豆成人入口 | 久久久久久九九 | 男人的天堂va | 欧美成人精品欧美一级私黄 | 女人16一毛片 | 人人看人人插 | 日日草视频 | 成年人视频在线免费看 | 午夜免费观看 | 欧美黄色特级片 | 国产xxxxxxxxx| 午夜三级视频 | 亚洲最新av在线 | 久久久久99精品成人片三人毛片 | 亚洲精品国产精品国自产网站 | 国产在线激情视频 | 国产视频一区二区在线 | 国产三级漂亮女教师 | 国产无套内射又大又猛又粗又爽 | 熟女丰满老熟女熟妇 | 午夜看片福利 | 91精品人妻一区二区三区蜜桃欧美 | xxxxx毛片| 亚洲国产精品视频在线观看 | www.污网站 | 国产精品99久久久 | 激情内射人妻1区2区3区 | 97爱爱视频| 人妖黄色片 | 8x8x成人| 久操伊人 | 国产一区二区三区视频在线播放 | 国产一级一级国产 | 又黄又爽的网站 | 国产人人爱 | 骚虎免费视频 | 一本色道久久综合亚洲精品按摩 | 一二区视频 | 欧美精品区 | 中文字幕在线免费观看 | 男生女生搞黄色 | 色哟哟免费| 精品视频在线免费 | 国产无遮挡裸体免费视频 | 国产香蕉视频在线播放 | 丝瓜色版 | 欧美人与性囗牲恔配 | 综合色综合 | 中文日韩在线 | 北条麻妃一区二区三区在线观看 | 日日骚网 | 人人爽人人插 | 污污污污污污www网站免费 | 日韩中文字幕在线看 | 欧美综合另类 | 中文字幕欧美日韩 | 成 人 黄 色 片 在线播放 | 99久久综合 | 亚洲性网站 | 国产精品久久久久久人妻精品动漫 | 免费黄网在线观看 | 国产又粗又猛又爽又黄的视频小说 | 一级视频在线免费观看 | 久色婷婷 | 人人干av| 99只有精品| 色眯眯av | 蜜臀一区二区三区 | 秋霞欧美在线观看 | 精品在线视频播放 | 最好看的中文字幕 | 冲田杏梨一区二区三区 | 亚洲欧美中文字幕 | 一级做a爱片性色毛片 | 日韩黄色高清视频 | 国产喷水在线 | 看片网站在线观看 | 福利社午夜影院 | 欧美专区在线 | 国产高清一区二区三区四区 | 亚洲色图偷拍 | 亚洲成人av一区二区三区 | 美女扒开粉嫩的尿囗给男生桶 | 粗喘呻吟撞击猛烈疯狂 | 无遮挡aaaaa大片免费看 | 国产超碰自拍 | 国产做爰免费视频观看 | 国产美女视频免费观看下载软件 | 夜夜免费视频 | 8ppav| 免费看欧美黑人毛片 | 久久国产精品毛片 |